首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86817篇
  免费   8642篇
  国内免费   3809篇
电工技术   4237篇
技术理论   9篇
综合类   6460篇
化学工业   24775篇
金属工艺   4418篇
机械仪表   5090篇
建筑科学   6803篇
矿业工程   1701篇
能源动力   5444篇
轻工业   5021篇
水利工程   1893篇
石油天然气   3270篇
武器工业   570篇
无线电   6964篇
一般工业技术   10588篇
冶金工业   4090篇
原子能技术   1927篇
自动化技术   6008篇
  2024年   141篇
  2023年   1176篇
  2022年   1683篇
  2021年   2225篇
  2020年   2308篇
  2019年   2207篇
  2018年   1970篇
  2017年   2344篇
  2016年   2604篇
  2015年   2714篇
  2014年   4288篇
  2013年   4939篇
  2012年   5464篇
  2011年   6297篇
  2010年   4811篇
  2009年   5037篇
  2008年   4899篇
  2007年   5801篇
  2006年   5590篇
  2005年   4947篇
  2004年   4111篇
  2003年   3873篇
  2002年   3222篇
  2001年   2517篇
  2000年   2118篇
  1999年   1732篇
  1998年   1448篇
  1997年   1315篇
  1996年   1137篇
  1995年   1090篇
  1994年   841篇
  1993年   736篇
  1992年   688篇
  1991年   501篇
  1990年   417篇
  1989年   405篇
  1988年   283篇
  1987年   198篇
  1986年   187篇
  1985年   201篇
  1984年   196篇
  1983年   155篇
  1982年   119篇
  1981年   62篇
  1980年   37篇
  1979年   27篇
  1978年   17篇
  1976年   17篇
  1959年   18篇
  1951年   38篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
31.
利用计算流体力学(Computational Fluid Dynamic, CFD)方法,针对连续螺旋折流板换热器建立物理模型和数学模型,在管侧介质为水和壳侧介质为原油条件下,研究不同原油流量及螺旋角对螺旋折流板换热器内部流场、换热性能及阻力性能的影响,并拟合了水油换热时螺旋折流板换热器的Nu、f与Re的关联式。结果表明:22°螺旋角的螺旋折流板换热器与其它较小螺旋角换热器对比,壳侧压降和换热系数逐渐减小,综合换热性能最佳。通过对壳侧原油为层流状态下的阻力系数和对流换热系数关系式进行拟合,更好地指导水-油连续螺旋折流板换热器的热力设计。  相似文献   
32.
《Ceramics International》2022,48(9):12281-12290
Following the rapid growth of lightning technology, the development of red-emitting phosphors is effective for improving color temperature and color rendering index for w-LEDs devices. Herein, a single phased garnet phosphor with cation and polyhedron substitution modification was firstly prepared. For Mg3Gd2Ge3O12: Bi3+, Eu3+, the intensity has been remarkably improved by about 16% compared to the one without Bi3+ sensitization. The energy transfer mechanism is identified in this work. Based on cation and polyhedron substitution strategies, novel phosphors with different compositions were obtained and further modified the PL properties. With Lu3+ substitution, the bond lengths between Bi3+ ion and anion ligands are decreased and the site symmetry has been strengthened, which leads to a 21 nm blue shift when Lu3+ totally replaced Gd3+ ions. In addition, Lu3+ and [SiO4] substitution strategies both effectively increased symmetric rigid structure, which leads to a significant improvement in thermal stability, indicating the samples own great potential in optical applications This work provides a new insight to synthesis red-emitting phosphors for warm white-LEDs.  相似文献   
33.
以智能反射面(intelligent reflecting surface,IRS)辅助的无线携能通信(simultaneous wireless information and power transfer,SWIPT)系统为背景,研究了该系统中基于能效优先的多天线发送端有源波束成形与IRS无源波束成形联合设计与优化方法。以最大化接收端的最小能效为优化目标,构造在发送端功率、接收端能量阈值、IRS相移等多约束下的非线性优化问题,用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。采用Dinkelbach算法转化目标函数,通过奇异值分解(singular value decomposition,SVD)和半定松弛(semi-definite relaxation,SDR)得到发送端有源波束成形向量。采用SDR得到IRS相移矩阵与反射波束成形向量。结果表明,该系统显著降低了系统能量收集(energy harvesting,EH)接收端的能量阈值。当系统总电路功耗为?15 dBm时,所提方案的用户能效为300 KB/J。当IRS反射阵源数与发送天线数均为最大值时,系统可达最大能效。  相似文献   
34.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
35.
36.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
37.
In the past decade, the perovskite solar cell (PSC) has attracted tremendous attention thanks to the substantial efforts in improving the power conversion efficiency from 3.8% to 25.5% for single-junction devices and even perovskite-silicon tandems have reached 29.15%. This is a result of improvement in composition, solvent, interface, and dimensionality engineering. Furthermore, the long-term stability of PSCs has also been significantly improved. Such rapid developments have made PSCs a competitive candidate for next-generation photovoltaics. The electron transport layer (ETL) is one of the most important functional layers in PSCs, due to its crucial role in contributing to the overall performance of devices. This review provides an up-to-date summary of the developments in inorganic electron transport materials (ETMs) for PSCs. The three most prevalent inorganic ETMs (TiO2, SnO2, and ZnO) are examined with a focus on the effects of synthesis and preparation methods, as well as an introduction to their application in tandem devices. The emerging trends in inorganic ETMs used for PSC research are also reviewed. Finally, strategies to optimize the performance of ETL in PSCs, effects the ETL has on J–V hysteresis phenomenon and long-term stability with an outlook on current challenges and further development are discussed.  相似文献   
38.
Deep-red light emitting phosphors are widely used in LEDs for indoor plant growth because of the critical role played by red light in plant growth. The luminescence properties of deep-red phosphors are still not well understood at present. An energy transfer strategy is a common and effective method to improve luminescence properties. In principle, the energy transfer process may occur when the sensitizer's emission spectra overlap with the activator's excitation spectra. In this work, Bi3+ and Mn4+ were incorporated into the matrix of Gd2MgTiO6 as sensitisers and activators, respectively. Mn4+ ions tend to occupy the [TiO6] octahedral site and the Bi3+ ions are expected to substituted in the site of Gd3+. The energy transfer process from Bi3+ to Mn4+ was realised and the photoluminescence (PL) intensity of Mn4+ increased with the doping content of Bi3+. Upon excitation at 375 nm, the PL intensity of Mn4+ increased to 116.4% when the doping concentration of Bi3+ reached 0.3%. Finally, the pc-LED devices were prepared by a Gd2MgTiO6:Bi3+, Mn4+ phosphor. The high red luminescence indicated that this phosphor has potential applications in indoor LED lighting.  相似文献   
39.
40.
A set of novel hydrazone derivatives were synthesized and analyzed for their biological activities. The compounds were tested for their inhibitory effect on the phosphorylating activity of the protein kinase CK2, and their antioxidant activity was also determined in three commonly used assays. The hydrazones were evaluated for their radical scavenging against the DPPH, ABTS and peroxyl radicals. Several compounds have been identified as good antioxidants as well as potent protein kinase CK2 inhibitors. Most hydrazones containing a 4-N(CH3)2 residue or perfluorinated phenyl rings showed high activity in the radical-scavenging assays and possess nanomolar IC50 values in the kinase assays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号